有理数是指两个整数的比,有理数是整数和分数的集合,整数也可看做是分母为一的分数,有理数的小数部分是有限或为无限循环的数,有理数是实数的紧密子集:每个实数都有任意接近的有理数。
一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有理数集可以用大写黑正体符号Q代表,但Q并不表示有理数,有理数集与有理数是两个不同的概念,有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数是指两个整数的比,有理数是整数和分数的集合,整数也可看做是分母为一的分数,有理数的小数部分是有限或为无限循环的数,有理数是实数的紧密子集:每个实数都有任意接近的有理数。
一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有理数集可以用大写黑正体符号Q代表,但Q并不表示有理数,有理数集与有理数是两个不同的概念,有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。